Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Séminaires
Chronologique
par Orateurs
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Séminaire de groupe

The Fibonacci family of dynamical universality classes
Gunter Schütz
Equipe 106, Institut Jean Lamour
vendredi 27 février 2015 , 10h25
Salle de séminaire du groupe de Physique Statistique

We use the universal nonlinear fluctuating hydrodynamics approach to study anomalous one- dimensional transport far from thermal equilibrium in terms of the dynamical structure function. Generically for more than one conservation law mode coupling theory is shown to predict a discrete family of dynamical universality classes with dynamical exponents which are consecutive ratios of neighboring Fibonacci numbers, starting with z = 2 (corresponding to a diffusive mode) or z = 3/2 (Kardar-Parisi-Zhang (KPZ) mode). If neither a diffusive nor a KPZ mode are present, all Fibonacci modes have as dynamical exponent the golden mean $z = (1 + sqrt{5})/2$. The scaling functions of the Fibonacci modes are asymmetric Lévy distributions which are completely fixed by the macroscopic current-density relation and compressibility matrix of the system. The theoretical predictions are confirmed by Monte-Carlo simulations of a three-lane asymmetric simple exclusion process.



Haut de page