Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Séminaires
Chronologique
par Orateurs
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Conférence

Phase coexistence in nonequilibrium reaction-diffusion systems: Exact results
Gunter Schütz
Juelich
vendredi 28 mai 2004 , 09h00
Conférence présentée à l'atelier (2004)

We study the flow of fluctuations in driven diffusive systems with two conserved densities. This yields a criterion for the microscopic stability of shocks. We also investigate the hydrodynamic limit on the Euler scale and obtain two coupled nonlinear PDE's for the evolution of the local density. For the selection of the physical solution of this system of conservation laws we introduce a viscosity matrix. Simulation of a specific lattice model suggests that, unlike in one-component systems, the choice of the infinitesimal viscosity term is not irrelevant in finite systems. This raises the unexpected question how the physical viscosity term has to be determined. For a special class of systems we propose a prescription that reproduces Monte-Carlo data reasonably well.



Haut de page