Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Séminaires
Chronologique
par Orateurs
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Séminaire de groupe

Low Dimensional Lattice Spin Models: Magnetization Plateau, Thermal Entanglement & Partition Function Zeros
Nerses Ananikyan
Department of Theoretical Physics
jeudi 26 mars 2015 , 10h25
Salle de séminaire du groupe de Physique Statistique

Quantum phase transitions play a key role in the understanding the phenomena of many-body systems, especially in anti-ferromagnetic magnetic plateaus. By means of variation mean-field-like treatment based on the Gibbs–Bogoliubov inequality, it is presented the frustrated magnetization plateau and thermal concurrence properties in spin-1/2 Ising–Heisenberg models on a triangulated Kagom´e lattice and a diamond chain. Using the transfer matrix method, an exact solution for the magnetization plateau and thermal entanglement of Ising-XYZ, Blume-Emery-Griffiths and Hubbard-Ising models on a diamond chain can be obtained. Partition function zeros of the spin-1/2 and spin-1 Ising-Heisenberg models on a diamond chain have been calculated using the transfer matrix method. The existence usual and triple Yang-Lee edge singularity exponents are shown.



Haut de page