Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Séminaires
Chronologique
par Orateurs
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Séminaire de groupe

Lie symmetries and reductions of boundary value problems of the Stefan type
Roman Cherniha
Dpt. Maths, Ukr Acad. Sciences, Kyiv, Ukraine
vendredi 28 octobre 2011 , 14h15
Salle de séminaire du groupe de Physique Statistique

A new definition of Lie-invariance for nonlinear multidimensional boundary value problems (BVPs) is proposed by the generalisation of existing those on much wider class of BVPs. The class of (1+3)-dimensional nonlinear BVPs of the Stefan type modeling the process of melting and evaporation of metals is studied in details. Using the definition proposed, the group classification problem for this class of BVPs is solved and some reductions (with physical meaning) to BVPs of lower dimensionality are constructed. An example how to construct exact solution of the (1+3)-dimensional nonlinear BVP problem with correctly-specified coeffcients is presented.



Haut de page