Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Séminaires
Chronologique
par Orateurs
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Conférence

Asymmetric simple exclusion process with quenched disorder
Ferenc Iglói
Budapest
jeudi 27 mai 2004 , 14h45
Conférence présentée à l'atelier (2004)

We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case the average distance traveled by a particle, $x$, scales with the time, $t$, as $x \sim t^{1/z}$, with a dynamical exponent $z > 1$. Using extreme value statistics and an asymptotically exact strong disorder renormalization group method we analytically calculate, $z_{pr}$, for particlewise (pt) disorder, which is argued to be related to the dynamical exponent for sitewise (st) disorder as $z_{st}=z_{pr}/2$. In the symmetric situation with zero mean drift the particle diffusion is ultra-slow, logarithmic in time.



Haut de page