Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Universal Finite-Size Scaling for Percolation Theory in High Dimensions
Kenna R., Berche B.
J. Phys. A: Math. Theor. 50 (2017) 235001
DOI : 10.1088/1751-8121/aa6bd5
ArXiv : arxiv:1606.00315 [PDF]

We present a unifying, consistent, finite-size scaling picture for percolation theory bringing it into the framework of a general, renormalization-group-based, scaling scheme for systems above their upper critical dimensions. Behaviour at the critical point is non-universal; cluster proliferation is responsible for the breakdown of hyperscaling there when free boundary conditions are used but not when the boundary conditions are periodic. Universality is instead manifest at the pseudocritical point, where the non-proliferation scenario is independent of boundary conditions. The failure of hyperscaling in its traditional form there is universally ascribed to the growth in sizes of clusters rather than the growth of their number.



Haut de page