Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

The 2D XY model on a finite lattice with structural disorder: quasi-long-range ordering under realistic conditions
Kapikranian O., Berche B., Holovatch Yu.
European Physical Journal B 56 (2007) 93-105
DOI : 10.1140/epjb/e2007-00095-5
ArXiv : cond-mat/0612147 [PDF]

We present an analytic approach to study concurrent influence of quenched non-magnetic site-dilution and finiteness of the lattice on the 2D XY model. Two significant deeply connected features of this spin model are: a special type of ordering (quasi-long-range order) below a certain temperature and a size-dependent mean value of magnetisation in the low-temperature phase that goes to zero (according to the Mermin-Wagner-Hohenberg theorem) in the thermodynamic limit. We focus our attention on the asymptotic behaviour of the spin-spin correlation function and the probability distribution of magnetisation. The analytic approach is based on the spin-wave approximation valid for the low-temperature regime and an expansion in the parameters which characterise the deviation from completely homogeneous configuration of impurities. We further support the analytic considerations by Monte Carlo simulations performed for different concentrations of impurities and compare analytic and MC results. We present as the main quantitative result of the work the exponent of the spin-spin correlation function power law decay. It is non universal depending not only on temperature as in the pure model but also on concentration of magnetic sites. This exponent characterises also the vanishing of magnetisation with increasing lattice size.



Haut de page