Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Tensor network trial states for chiral topological phases in two dimensions and a no-go theorem in any dimension
Dubail J., Read N.
Phys. Rev B 92 (2016) 205307
DOI : 10.1103/PhysRevB.92.205307
ArXiv : arxiv:1307.7726 [PDF]

Trial wavefunctions that can be represented by summing over locally-coupled degrees of freedom are called tensor network states (TNSs); they have seemed difficult to construct for two-dimensional topological phases that possess protected gapless edge excitations. We show it can be done for chiral states of free fermions, using a Gaussian Grassmann integral, yielding $p_x \pm i p_y$ and Chern insulator states, in the sense that the fermionic excitations live in a topologically non-trivial bundle of the required type. We prove that any strictly short-range quadratic parent Hamiltonian for these states is gapless; the proof holds for a class of systems in any dimension of space. The proof also shows, quite generally, that sets of compactly-supported Wannier-type functions do not exist for band structures in this class. We construct further examples of TNSs that are analogs of fractional (including non-Abelian) quantum Hall phases; it is not known whether parent Hamiltonians for these are also gapless.



Haut de page