Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Spherical model of growing interfaces
Henkel M., Durang X.
J. Stat. Mech. (2015) P05022
DOI : 10.1088/1742-5468/2015/05/P05022
ArXiv : arxiv:1501.07745 [PDF]

Building on an analogy between the ageing behaviour of magnetic systems and growing interfaces, the Arcetri model, a new exactly solvable model for growing interfaces is introduced, which shares many properties with the kinetic spherical model. The long-time behaviour of the interface width and of the two-time correlators and responses is analysed. For all dimensions d neq 2, universal characteristics distinguish the Arcetri model from the Edwards-Wilkinson model. For d = 1 dimensions, the Arcetri model is equivalent to the p = 2 spherical spin glass. For 2 < d < 4 dimensions, its relaxation properties are related to the ones of a particle-reaction model, namely a bosonic variant of the diffusive pair-contact process. The global persistence exponent is also derived.



Haut de page