Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Random walks and magnetic oscillations in compensated metals
Fortin J.-Y. and Audouard A.
Physical Review B 80 (2009) 214407
DOI : 10.1103/PhysRevB.80.214407
ArXiv : arxiv:0905.0702 [PDF]

The field- and temperature-dependent de Haas-van Alphen oscillations spectrum is studied for an ideal two-dimensional compensated metal whose Fermi surface is made of a linear chain of successive orbits with electron and hole character, coupled by magnetic breakdown. We show that the first harmonic amplitude can be accurately evaluated on the basis of the Lifshits-Kosevich semiclassical formula by considering a set of random walks on the orbit network, in agreement with the numerical resolution of Pippard equations associated with the surface. Oppositely, the second-harmonic amplitude does not follow the Lifshits-Kosevich behavior and vanishes at a critical value of the field-to-temperature ratio which depends explicitly on the relative value between the hole and electron effective masses.



Haut de page