Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Probability distribution of the number of distinct sites visited by a random walk on the finite-size fully-connected lattice
Turban L.
J. Phys. A: Math. Theor. 47 (2014) 385004
DOI : 10.1088/1751-8113/47/38/385004
ArXiv : arxiv:1409.3718 [PDF]

The probability distribution of the number s of distinct sites visited up to time t by a random walk on the fully-connected lattice with N sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of s and r, where r is the number of sites visited only once up to time t. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables u and v for r and s and working in the scaling limit ($tto infty $, $Nto infty $ with w = t/N fixed) the joint probability density of u and v is shown to be a bivariate Gaussian density. It follows that the fluctuations of r and s around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the critical dimension ${{d}_{{rm c}}}=2$.



Haut de page