Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks
M. Krasnytska, B. Berche, Holovatch Yu., R. Kenna
J. Phys. A: Math. Theor. 49 (2016) 135001
DOI : 10.1088/1751-8113/49/13/135001
ArXiv : arxiv:1510.00534 [PDF]

We analyze the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P(k)∼k−λ. We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ>5, reproduces the zeros for the Ising model on a complete graph. For 3<λ<5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3<λ<5. Whereas in the former case the zeros are purely imaginary, they have a non zero real part in latter case, so that the celebrated Lee-Yang circle theorem is violated.



Haut de page