Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

One-dimensional q-state Potts model with multi-site interactions
Turban L.
J. Phys. A 50 (2017) 205001 IOPSelect
DOI : 10.1088/1751-8121/aa6ad1
ArXiv : arxiv:1701.09058 [PDF]
HAL : hal-01511884

A one-dimensional (1D) $q$-state Potts model with $N$ sites, $m$-site interaction $K$ in a field $H$ is studied for arbitrary values of $m$. Exact results for the partition function and the two-point correlation function are obtained at $H=0$. The system in a field is shown to be self-dual. Using a change of Potts variables, it is mapped onto a standard 2D Potts model, with first-neighbour interactions $K$ and $H$, on a cylinder with helical boundary conditions (BC). The 2D system has a length $N/m$ and a transverse size $m$. Thus the Potts chain with multi-site interactions is expected to develop a 2D critical singularity along the self-duality line, $(e^{qK}-1)(e^{qH}-1)=q$, when $N/m\to\infty$ and $m\to\infty$.



Haut de page