Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

One-dimensional Ising model with multispin interactions
Turban L.
J. Phys. A: Math. Theor. 49 (2016) 355002
DOI : 10.1088/1751-8113/49/35/355002
ArXiv : arxiv:1605.0519 [PDF]
HAL : hal-01352924

We study the spin-$1/2$ Ising chain with multispin interactions $K$ involving the product of $m$ successive spins, for general values of $m$. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions (BC) and we calculate the two-spin correlation function. When placed in an external field $H$ the system is shown to be self-dual. Using another change of spin variables the one-dimensional (1D) Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions $K$ and $H$. The 2D system, with size $m\times N/m$, has the topology of a cylinder with helical BC. In the thermodynamic limit $N/m\to\infty$, $m\to\infty$, a 2D critical singularity develops on the self-duality line, $\sinh 2K\sinh 2H=1$.



Haut de page