Ãðóïà ñòàòèñòè÷íî¿ ô³çèêè

Êîìàíäà 106, ²íñòèòóò Æàíà Ëÿìóðà

                     
Ãîëîâíà ñòîð³íêà
Äå
Ñï³âðîá³òíèêè
Ïóáë³êàö³¿
Ñòàòò³
Letters
Çàïðîøåí³ ñòàòò³
Ïðàö³ êîíôåðåíö³é
Unpublished
Ph.D
Habilitation à diriger des recherches
Epistemology, history of sciences
Pedagogical papers
Êíèæêè
Book edition
ðîçä³ëè â êíèæêàõ
Ïîïóëÿðèçàö³ÿ, ³ñòîð³ÿ íàóêè
Ñåì³íàðè
Àòåëüº
Rencontres
Øêîëè
̳æíàð. ñï³âïðàöÿ
Ðîáî÷³ ãðóïè
Ïîñàäè, äèñåðòàö³¿
Âèêëàäàííÿ

Ñòàòò³

On the universality class of the 3d Ising model with long-range-correlated disorder
Ivaneyko D., Berche B., Holovatch Yu., Ilnytskyi J.
Physica A 387 (2008) 4497-4512
DOI : 10.1016/j.physa.2008.03.034
ArXiv : cond-mat/0611568 [PDF]

We analyze a controversial question about the universality class of the three-dimensional Ising model with long-range-correlated disorder. Whereas both analytical and numerical studies performed so far support an extended Harris criterion (A. Weinrib, B. I. Halperin, Phys. Rev. B 27 (1983) 413) and bring about the new universality class, the numerical values of the critical exponents found so far differ essentially. To resolve this discrepancy we perform extensive Monte Carlo simulations of a 3d Ising magnet with non-magnetic impurities arranged as lines with random orientation. We apply Wolff cluster algorithm accompanied by a histogram reweighting technique and make use of the finite-size scaling to extract the values of critical exponents governing the magnetic phase transition. Our estimates for the exponents differ from the results of the two numerical simulations performed so far and are in favour of a non-trivial dependency of the critical exponents on the peculiarities of long-range correlations decay.



Äîãîðè