Gruppo di Fisica Statistica

Gruppo 106, Institut Jean Lamour

                     
Home
Dove
Personale
Pubblicazioni
Articoli in riviste
Lettere
Proceeding di conferenze per invito
Proceeding di conferenze
Non pubblicato
Ph.D
Habilitation à diriger des recherches
Epistemologia e storia della scienza
Articoli pedagogici
Libri
Editori
Capitoli di libri
Divulgazione
Seminari
Workshops
Rencontres
Scuole
Internazionale
Gruppo di Lavoro
Posizioni
Insegnamento

Articoli in riviste

On the universality class of the 3d Ising model with long-range-correlated disorder
Ivaneyko D., Berche B., Holovatch Yu., Ilnytskyi J.
Physica A 387 (2008) 4497-4512
DOI : 10.1016/j.physa.2008.03.034
ArXiv : cond-mat/0611568 [PDF]

We analyze a controversial question about the universality class of the three-dimensional Ising model with long-range-correlated disorder. Whereas both analytical and numerical studies performed so far support an extended Harris criterion (A. Weinrib, B. I. Halperin, Phys. Rev. B 27 (1983) 413) and bring about the new universality class, the numerical values of the critical exponents found so far differ essentially. To resolve this discrepancy we perform extensive Monte Carlo simulations of a 3d Ising magnet with non-magnetic impurities arranged as lines with random orientation. We apply Wolff cluster algorithm accompanied by a histogram reweighting technique and make use of the finite-size scaling to extract the values of critical exponents governing the magnetic phase transition. Our estimates for the exponents differ from the results of the two numerical simulations performed so far and are in favour of a non-trivial dependency of the critical exponents on the peculiarities of long-range correlations decay.



Inizio pagina