Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

On the determinant representations of Gaudin models' scalar products and form factors
Faribault A., Schuricht D.
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 45 (2012) 485202
DOI : 10.1088/1751-8113/45/48/485202

We propose alternative determinant representations of certain form factors and scalar products of states in rational Gaudin models realized in terms of compact spins. We use alternative pseudo-vacuums to write overlaps in terms of partition functions with domain wall boundary conditions. Contrarily to Slavnov's determinant formulas, this construction does not require that any of the involved states be solutions to the Bethe equations; a fact that could prove useful in certain non-equilibrium problems. Moreover, by using an atypical determinant representation of the partition functions, we propose expressions for the local spin raising and lowering operators form factors which only depend on the eigenvalues of the conserved charges. These eigenvalues define eigenstates via solutions of a system of quadratic equations instead of the usual Bethe equations. Consequently, the current work allows important simplifications to numerical procedures addressing decoherence in Gaudin models.



Haut de page