Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Non-local representations of the ageing algebra in higher dimensions
Stoimenov S., Henkel M.
J. Phys. A Math. Theor. 46 (2013) 245004
DOI : 10.1088/1751-8113/46/24/245004
ArXiv : arxiv:1212.6156 [PDF]

The ageing Lie algebra age(d) and especially its local representations for a dynamical exponent z=2 has played an important r\^ole in the description of systems undergoing simple ageing, after a quench from a disordered state to the low-temperature phase. Here, the construction of representations of age(d) for generic values of z is described for any space dimension d>1, generalising upon earlier results for d=1. The mechanism for the closure of the Lie algebra is explained. The Lie algebra generators contain higher-order differential operators or the Riesz fractional derivative. Co-variant two-time response functions are derived. Some simple applications to exactly solvable models of phase separation or interface growth with conserved dynamics are discussed.



Haut de page