Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Meta-conformal invariance and the boundedness of two-point correlation functions
Henkel M., Stoimenov S.
J. Phys A: Math. Theor. 49 (2016) 47LT01
DOI : 10.1088/1751-8113/49/47/47LT01
ArXiv : arxiv:1607.00685 [PDF]

The covariant two-point functions, derived from Ward identities in direct space, can be affected by consistency problems and can become unbounded for large time- or space-separations. This difficulty arises for several extensions of dynamical scaling, for example Schr\"odinger-invariance, conformal Galilei invariance or meta-conformal invariance, but not for standard ortho-conformal invariance. For meta-conformal invariance in 1+1 dimensions, these difficulties can be cured by going over to a dual space and an extension of these dynamical symmetries through the construction of a new generator in the Cartan sub-algebra. This provides a canonical interpretation of meta-conformally covariant two-point functions as correlators. Galilei-conformal correlators can be obtained from meta-conformal invariance through a simple contraction. In contrast, by an analogus construction, Schr\"odinger-covariant two-point functions are causal response functions. All these two-point functions are bounded at large separations, for sufficiently positive values of the scaling exponents.



Haut de page