Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Local scale-invariance and its applications to strongly anisotropic critical phenomena
Henkel M., Picone A., Stoimenov S., Unterberger J.
ArXiv : cond-mat/0307649 [PDF]

The generalization of dynamical scaling to local scale-invariance is reviewed. Starting from a recapitulation of the phenomenology of ageing phenomena, the generalization of dynamical scaling to local scale transformations for any given dynamical exponent z is described and the two distinct types of local scale invariance are presented. The special case z=2 and the associated Ward identity of Schroedinger invariance is treated. Local scale-invariance predicts the form of the two-point functions. Existing confirmations of these predictions for (I) the Lifshitz points in spin systems with competing interactions such as the ANNNI model and (II) non-equilibrium ageing phenomena as occur in the kinetic Ising model with Glauber dynamics are described.



Haut de page