Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Actes de conférences

Lie symmetries of semi-linear Schroedinger equations and applications
Stoimenov S., Henkel M.
Journal of Physics: Conference Series 40 (2006) 144
DOI : 10.1088/1742-6596/40/1/018
ArXiv : math-ph/0512025 [PDF]

Conditional Lie symmetries of semi-linear 1D Schroedinger and diffusion equations are studied in case the mass (or the diffusion constant) is considered as an additional variable and/or where the couplings of the non-linear part have a non-vanishing scaling dimension. In this way, dynamical symmetries of semi-linear Schroedinger equations become related to certain subalgebras of a three-dimensional conformal Lie algebra (conf3) C. The representations of these subalgebras are classified and the complete list of conditionally invariant semi-linear Schroedinger equations is obtained. Applications to the phase-ordering kinetics of simple magnets and to simple particle-reaction models are briefly discussed.



Haut de page