Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Kinetics of phase-separation in the critical spherical model and local scale-invariance
Baumann F., Henkel M.
J. Stat. Mech. (2007) P01012
DOI : 10.1088/1742-5468/2007/01/P01012
ArXiv : cond-mat/0611652 [PDF]

The scaling forms of the space- and time-dependent two-time correlation and response functions are calculated for the kinetic spherical model with a conserved order-parameter and quenched to its critical point from a completely disordered initial state. The stochastic Langevin equation can be split into a noise part and into a deterministic part which has local scale-transformations with a dynamical exponent z=4 as a dynamical symmetry. An exact reduction formula allows to express any physical average in terms of averages calculable from the deterministic part alone. The exact spherical model results are shown to agree with these predictions of local scale-invariance. The results also include kinetic growth with mass conservation as described by the Mullins-Herring equation.



Haut de page