Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Grassmannian representation of the two-dimensional monomer-dimer model
Allegra N., Fortin J.
Phys. Rev. E89 (2014) 062107
ArXiv : arxiv:1402.5512 [PDF]

We present an application of the Grassmann algebra to the problem of the monomer-dimer statistics on a two-dimensional square lattice. The exact partition function, or total number of possible configurations, of a system of dimers with a finite set of n monomers with fixed positions can be expressed via a quadratic fermionic theory. We give an answer in terms of a product of two pfaffians and the solution is closely related to the Kasteleyn result of the pure dimer problem. Correlation functions are in agreement with previous results, both for monomers on the boundary, where a simple exact expression is available in the discrete and continuous case, and in the bulk where the expression is evaluated numerically.



Haut de page