Gruppo di Fisica Statistica

Gruppo 106, Institut Jean Lamour

                     
Home
Dove
Personale
Pubblicazioni
Articoli in riviste
Lettere
Proceeding di conferenze per invito
Proceeding di conferenze
Non pubblicato
Ph.D
Habilitation à diriger des recherches
Epistemologia e storia della scienza
Articoli pedagogici
Libri
Editori
Capitoli di libri
Divulgazione
Seminari
Workshops
Rencontres
Scuole
Internazionale
Gruppo di Lavoro
Posizioni
Insegnamento

Articoli in riviste

Gradient critical phenomena in the Ising quantum chain
Platini T., Karevski D., Turban L.
J. Phys. A: Math. Theor. 40 (2007) 1467 - 1479
DOI : 10.1088/1751-8113/40/7/004
ArXiv : cond-mat/0611213 [PDF]
HAL : hal-00112421

We consider the behaviour of a critical system in the presence of a gradient perturbation of the couplings. In the direction of the gradient an interface region separates the ordered phase from the disordered one. We develop a scaling theory for the density profiles induced by the gradient perturbation which involves a characteristic length given by the width of the interface region. The scaling predictions are tested in the framework of the mean-field Ginzburg-Landau theory. Then we consider the Ising quantum chain in a linearly varying transverse field which corresponds to the extreme anisotropic limit of a classical two-dimensional Ising model. The quantum Hamiltonian can be diagonalized exactly in the scaling limit where the eigenvalue problem is the same as for the quantum harmonic oscillator. The energy density, the magnetization profile and the two-point correlation function are studied either analytically or by exact numerical calculations. Their scaling behaviour are in agreement with the predictions of the scaling theory.



Inizio pagina