Grupo de Física Estadística

Equipo 106, Instituto Jean Lamour

                     
Página principal
Donde
Personal
Publicaciones
Artículos regulares in revistas
Letras
Contribuciones invitadas
Actas de conferencias
No publicado
Tesis
Habilitation à diriger des recherches
Epistemología, historia de la ciencia
Pedagogical papers
Libros
Libros, , edición científica
Capítulos de libros
Divulgación
Seminarios
Talleres
Rencontres
Escuelas
Internacional
Grupos de trabajo
Tesis, posiciones
Enseñanza

Artículos regulares in revistas

Exactly solvable models of growing interfaces and lattice gases: the Arcetri models, ageing and logarithmic sub-ageing
Durang X., Henkel M.
J. Stat. Mech. (2017) sous presse
ArXiv : arxiv:1708.08237 [PDF]

Motivated by an analogy with the spherical model of a ferromagnet, the three Arcetri models are defined. They present new universality classes, either for the growth of interfaces, or else for lattice gases. They are distinct from the common Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes. Their non-equilibrium evolution can be studied from the exact computation of their two-time correlators and responses. The first model, in both interpretations, has a critical point in any dimension and shows simple ageing at and below criticality. The exact universal exponents are found. The second and third model are solved at zero temperature, in one dimension, where both show logarithmic sub-ageing, of which several distinct types are identified. Physically, the second model describes a lattice gas and the third model interface growth. A clear physical picture on the subsequent time- and length-scales of the sub-ageing process emerges.



Inicio de página