Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Exact correlations in the one-dimensional coagulation-diffusion process by the empty-interval method
Durang X., Fortin J.-Y., Del Biondo D., Henkel M., Richert J.
Journal of Statistical Mechanics: Theory and Experiment (2010) P04002
DOI : 10.1088/1742-5468/2010/04/P04002
ArXiv : arxiv:1001.3526 [PDF]

The long-time dynamics of reaction-diffusion processes in low dimensions is dominated by fluctuation effects. The one-dimensional coagulation-diffusion process describes the kinetics of particles which freely hop between the sites of a chain and where upon encounter of two particles, one of them disappears with probability one. The empty-interval method has, since a long time, been a convenient tool for the exact calculation of time-dependent particle densities in this model. We generalise the empty-interval method by considering the probability distributions of two simultaneous empty intervals at a given distance. While the equations of motion of these probabilities reduce for the coagulation-diffusion process to a simple diffusion equation in the continuum limit, consistency with the single-interval distribution introduces several non-trivial boundary conditions which are solved for the first time for arbitrary initial configurations. In this way, exact space-time-dependent correlation functions can be directly obtained and their dynamic scaling behaviour is analysed for large classes of initial conditions.



Haut de page