Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Exact Matrix Product Solution for the Boundary-Driven Lindblad XXZ Chain
Karevski D., Popkov V., Schütz G.
Phys. Rev. Lett. 110 (2013) 047201
DOI : 10.1103/PhysRevLett.110.047201

We demonstrate that the exact nonequilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the nonequilibrium density matrix where the matrices satisfy a quadratic algebra. This algebra turns out to be related to the quantum algebra Uq[SU(2)]. Coherent state techniques are introduced for the exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad terms that correspond to two different completely polarized boundary states. We show that this boundary twist leads to nonvanishing stationary currents of all spin components. Our results suggest that the matrix product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad boundary terms.



Haut de page