Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

Articles dans des revues à comité de lecture
Actes de conférences invités
Actes de conférences
Non publié
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Edition d'ouvrage
Chapitres de livre
Grp Travail
Theses, Postes

Articles dans des revues à comité de lecture

Emergence of Criticality in the Transportation Passenger Flow: Scaling and Renormalization in the Seoul Bus System
Goh S., Lee K., Choi MY, Fortin J.-Y.
PLoS ONE 9 (2014) e89980
DOI : 10.1371/journal.pone.0089980

Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) “block stop” and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.

Haut de page