Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Dynamics of interval fragmentation and asymptotic distributions
Fortin J.-Y., Mantelli S., Choi M.Y.
J. Phys. A: Math. Theor. 46 (2013) 225002
DOI : 10.1088/1751-8113/46/22/225002
ArXiv : arxiv:1308.2811 [PDF]

We study the general fragmentation process starting from one element of size unity ($E=1$). At each elementary step, each existing element of size $E$ can be fragmented into $k\,(\ge 2)$ elements with probability $p_k$. From the continuous time evolution equation, the size distribution function $P(E;t)$ can be derived exactly in terms of the variable $z= -\log E$, with or without a source term that produces with rate $r$ additional elements of unit size. Different cases are probed, in particular when the probability of breaking an element into $k$ elements follows a power law: $p_k\propto k^{-1-\eta}$. The asymptotic behavior of $P(E;t)$ for small $E$ (or large $z$) is determined according to the value of $\eta$. When $\eta>1$, the distribution is asymptotically proportional to $t^{1/4}\exp\left[\sqrt{-\alpha t\log E}\right][-\log E]^{-3/4}$ with $\alpha$ being a positive constant, whereas for $\eta<1$ it is proportional to $E^{\eta-1}t^{1/4}\exp\left[\sqrt{-\alpha t\log E}\right][-\log E]^{-3/4}$ with additional time-dependent corrections that are evaluated accurately with the saddle-point method.



Haut de page