Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Dynamical symmetries of semi-linear Schroedinger and diffusion equations
Stoimenov S., Henkel M.
Nuclear Physics B 723 (2005) 205
DOI : 10.1016/j.nuclphysb.2005.06.017
ArXiv : math-ph/0504028 [PDF]

Conditional and Lie symmetries of semi-linear 1D Schroedinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schroedinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf3)â"`. We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf3) â"` are classified and the complete list of conditionally invariant semi-linear Schroedinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed.



Haut de page