Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Diverging conductance at the contact between random and pure quantum XX spin chains
Chatelain C.
J. Stat. Mech. (2017) 113301
DOI : 10.1088/1742-5468/aa933f
ArXiv : arxiv:1707.03192 [PDF]
HAL : hal-01559725

A model consisting in two quantum XX spin chains, one homogeneous and the second with random couplings drawn from a binary distribution, is considered. The two chains are coupled to two different non-local thermal baths and their dynamics is governed by a Lindblad equation. In the steady state, a current $J$ is induced between the two chains by coupling them together by their edges and imposing different chemical potentials $\mu$ to the two baths. While a regime of linear characteristics $J$ versus $\Delta\mu$ is observed in the absence of randomness, a gap opens as the disorder strength is increased. In the infinite-randomness limit, this behavior is related to the density of states of the localized states contributing to the current. The conductance is shown to diverge in this limit.



Haut de page