Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Conformal two-boundary loop model on the annulus
Dubail J., Jacobsen J.L., Saleur H.
NUCLEAR PHYSICS B 813 (2009) 430
DOI : 10.1016/j.nuclphysb.2008.12.023

We study the two-boundary extension of a loop model-corresponding to the dense phase of the O(n) model, or to the Q = n(2) state Potts model-in the critical regime -2 < n <= 2. This model is defined on an annulus of aspect ratio tau. Loops touching the left, right, or both rims of the annulus are distinguished by arbitrary (real) weights which moreover depend on whether they wrap the periodic direction. Any value of these weights corresponds to a conformally invariant boundary condition. We obtain the exact seven-parameter partition function in the continuum limit, as a function of tau, by a combination of algebraic and field theoretical arguments. As a specific application we derive some new crossing formulae for percolation clusters.



Haut de page