Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Bulk and boundary critical behaviour of thin and thick domain walls in the two-dimensional Potts model
Dubail J., Jacobsen J.L., Saleur. H
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT (2010) P12026
DOI : 10.1088/1742-5468/2010/12/P12026

The geometrical critical behaviour of the two-dimensional Q-state Potts model is usually studied in terms of the Fortuin-Kasteleyn (FK) clusters, or their surrounding loops. In this paper we study a quite different geometrical object: the spin clusters, defined as connected domains where the spin takes a constant value. Unlike the usual loops, the domain walls separating different spin clusters can cross and branch. Moreover, they come in two versions, thin or thick, depending on whether they separate spin clusters of different or identical colours. For these reasons their critical behaviour is different from, and richer than, those of FK clusters. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. We study the critical behaviour both in the bulk, and at a boundary with free, fixed, or mixed boundary conditions. This leads to infinite series of fundamental critical exponents, hl(1)-l(2),2l(1) in the bulk and h(1+2)(l(1)-l(2)),1+4l(1) at the boundary, valid for 0 <= Q <= 4, that describe the insertion of l(1) thin and l(2) thick domain walls. We argue that these exponents imply that the domain walls are thin and thick also in the continuum limit. A special case of the bulk exponents is derived analytically from a massless scattering approach.



Haut de page