Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Actes de conférences

Boundedness of two-point correlators covariant under the meta-conformal algebra
Stoimenov S., Henkel M.
Bulg. J. Phys. 44 (2017) 39

Covariant two-point functions are derived from Ward identities. For several extensions of dynamical scaling, notably Schr\"odinger-invariance, conformal Galilei invariance or meta-conformal invariance, the results become unbounded for large time- or space-separations. Standard ortho-conformal invariance does not have this problem. An algebraic procedure is presented which corrects this difficulty for meta-conformal invariance in $(1+1)$ dimensions. A canonical interpretation of meta-conformally covariant two-point functions as correlators follows. Galilei-conformal correlators can be obtained from meta-conformal invariance through a simple contraction. All these two-point functions are bounded at large separations, for sufficiently positive values of the scaling exponents.



Haut de page