Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Asymptotic behaviour of the density of states on a random lattice
Fortin J.-Y.
Journal of Physics A: Mathematical and General 38 (2005)
DOI : 10.1088/0305-4470/38/5/L02
ArXiv : cond-mat/0409212 [PDF]

We study the diffusion of a particle on a random lattice with fluctuating local connectivity of average value q. This model is a basic description of relaxation processes in random media with geometrical defects. We analyse here the asymptotic behaviour of the eigenvalue distribution for the Laplacian operator. We found that the localized states outside the mobility band and observed by Biroli and Monasson (1999 J. Phys. A: Math. Gen. 32 L255), in a previous numerical analysis, are described by saddle-point solutions that break the rotational symmetry of the main action in the real space. The density of states is characterized asymptotically by a series of peaks with periodicity 1/q.



Haut de page