Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

Anomalous diffusion in a space- and time-dependent energy landscape
Turban L.
J. Stat. Mech. (2010) P12013
ArXiv : arxiv:1011.2284 [PDF]

We study the influence on diffusion in one dimension of a potential energy perturbation varying as a power in space and time. We concentrate on the case of a parabolic perturbation in space decaying as $t^{-\omega}$ which shows a rich variety of scaling behaviours. When $\omega=1$, the perturbation is truly marginal and leads to anomalous (super)diffusion with a dynamical exponent varying continuously with the perturbation amplitude below some negative threshold value. For slower decay, $\omega<1$, the perturbation becomes relevant and the system is either subdiffusive for an attractive potential or displays a stretched-exponential behaviour for a repulsive one. Exact results are obtained for the mean value and the variance of the position as well as for the surviving probability.



Haut de page