Groupe de Physique Statistique

Equipe 106, Institut Jean Lamour

                     
Accueil
Accès
Personnel
Publications
Articles dans des revues à comité de lecture
Lettres
Actes de conférences invités
Actes de conférences
Non publié
Thèse
Habilitation à diriger des recherches
Epistémologie, histoire des sciences
Articles à vocation pédagogique
Livres
Edition d'ouvrage
Chapitres de livre
Vulgarisation
Séminaires
Ateliers
Rencontres
Ecoles
International
Grp Travail
Theses, Postes
Enseignement

Articles dans des revues à comité de lecture

A new critical exponent 'coppa' and its logarithmic counterpart 'hat coppa'
Kenna R., Berche B.
Condensed Matter Physics 16 (2013) 23601:1-12
DOI : 10.5488/CMP.16.23601
ArXiv : arxiv:1411.2754 [PDF]

It is well known that standard hyperscaling breaks down above the upper critical dimension dc, where the critical exponents take on their Landau values. Here we show that this is because, in standard formulations in the thermodynamic limit, distance is measured on the correlation-length scale. However, the correlation-length scale and the underlying length scale of the system are not the same at or above the upper critical dimension. Above dc they are related algebraically through a new critical exponent coppa, while at dc they differ through logarithmic corrections governed by an exponent hat{coppa}. Taking proper account of these different length scales allows one to extend hyperscaling to all dimensions.



Haut de page