Ãðóïà ñòàòèñòè÷íî¿ ô³çèêè

Êîìàíäà 106, ²íñòèòóò Æàíà Ëÿìóðà

                     
Ãîëîâíà ñòîð³íêà
Äå
Ñï³âðîá³òíèêè
CV
Êîëî çàö³êàâëåíü
Ïóáë³êàö³¿
Ñåì³íàðè
Conferences
Âèêëàäàííÿ
Ïóáë³êàö³¿
Ñåì³íàðè
Àòåëüº
Rencontres
Øêîëè
̳æíàð. ñï³âïðàöÿ
Ðîáî÷³ ãðóïè
Ïîñàäè, äèñåðòàö³¿
Âèêëàäàííÿ
[-] [+]

Ïîñò³éí³ ñï³âðîá³òíèêè

Äàí³ ïðî îñîáó:


Alexandre Faribault







Ñïèñîê ïóáë³êàö³é :

Ñòàòò³
[20] Quadratic operator relations and Bethe equations for spin-1/2 Richardson-Gaudin models
C. Dimo, A. Faribault
submitted to J. Phys .A: Math.Theor. (2018) (2018)
[19] Ground state solutions of Inhomogeneous T-Q equations
S. Bélliard, A. Faribault
accepted for publication in SciPost Phys (2018) (2018)
[18] Common framework and quadratic Bethe equations for rational Gaudin magnets in arbitrarily oriented magnetic fields
A. Faribault, H. Tschirhart
SciPost Phys. 3 (2017) 009
[17] Persisting correlations of a central spin coupled to large spin baths
U. Seifert, P. Bleicker, P. Schering, A. Faribault and G. S. Uhrig
Phys. Rev. B 94 (2016) 094308
[16] Determinant representation of the domain-wall boundary condition partition function of a Richardson-Gaudin model containing one arbitrary spin
Faribault A., Tschirhart H., Muller N.
ArXiv : arxiv/1511.03127
[15] Chiral $SU(2)k$ currents as local operators in vertex models and spin chains
Bondesan R., Dubail J., Faribault A., Ikhlef Y.
J. Phys. A : Math. Theor. (2015) to appear
[14] Algebraic Bethe Ansätze and eigenvalue-based de- terminants for Dicke–Jaynes–Cummings–Gaudin quantum integrable models
Tschirhart H., Faribault A.
J. Phys. A : Math. Theor. 47 (2014) 405204
[13] Integrability-Based Analysis of the Hyperfine-Interaction-Induced Decoherence in Quantum Dots
Faribault A., Schuricht D.
Phys. Rev. Lett. 110 (2013) 040405
[12] Spin decoherence due to a randomly fluctuating spin bath
Faribault A., Schuricht D.
Phys. Rev. B 88 (2013) 085323
[11] On the determinant representations of Gaudin models' scalar products and form factors
Faribault A., Schuricht D.
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 45 (2012) 485202
[10] Nonequilibrum dynamics in the strongly excited inhomogeneous Dicke model
Straeter, C., Tsyplyatyev O., Faribault A.
PHYSICAL REVIEW B 86 (2012) 195101
[9] Bethe ansatz and ordinary differential equation correspondence for degenerate Gaudin models
El Araby O, Gritsev V., Faribault A.
PHYSICAL REVIEW B 85 (2012) 115130
[8] Gaudin models solver based on the correspondence between Bethe ansatz and ordinary differential equations
Faribault A., El Araby O., Straeter C., Gritsev V.
PHYSICAL REVIEW B 83 (2011) 235124
[7] Dynamical correlation functions of the mesoscopic pairing model
Faribault A., Calabrese P., Caux J.S.
PHYSICAL REVIEW B 81 (2010) 174507
[6] Bethe ansatz approach to quench dynamics in the Richardson model
Faribault A., Calabrese P., Caux J.S.
JOURNAL OF MATHEMATICAL PHYSICS 50 (2009) 095212
[5] Quantum quenches from integrability: the fermionic pairing model
Faribault A., Calabrese P., Caux J.S.
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT (2009) P03018
[4] Exact mesoscopic correlation functions of the Richardson pairing model
Faribault A., Calabrese P., Caux J.S.
PHYSICAL REVIEW B 77 (2008) 064503
[3] Effective pseudospin wave model for the coherent stripe phase in a bilayer system
Faribault A., Cote R., Fertig, H.A.
PHYSICA E 34 (2006) 183
[2] Replica study of pinned bubble crystals
Cote R, Li MR, Faribault A., Fertig H.A.
PHYSICAL REVIEW B 72 (2005) 115344
[1] Pinning and sliding of quantum hall stripes and bubbles
Cote R, Li MR, Fertig H.A., Faribault A., Yi H.M.
INTERNATIONAL JOURNAL OF MODERN PHYSICS B 18 (2004) 3527


Publication list on other websites :
ArXiv, IOP eprintweb, CiteBase, Scientific Commons, Scitation, Google Scholar.


Ñåì³íàðè â ãðóï³ ³ äîïîâ³ä³ íà àòåëüº.

Ñåì³íàðè â ãðóï³ ³ äîïîâ³ä³ íà àòåëüº.

Ëåêö³¿ ³ êîíñïåêòè


Äîãîðè