Ãðóïà ñòàòèñòè÷íî¿ ô³çèêè

Êîìàíäà 106, ²íñòèòóò Æàíà Ëÿìóðà

                     
Ãîëîâíà ñòîð³íêà
Äå
Ñï³âðîá³òíèêè
Ïóáë³êàö³¿
Ñåì³íàðè
Àòåëüº
Rencontres
Øêîëè
̳æíàð. ñï³âïðàöÿ
Ðîáî÷³ ãðóïè
Ïîñàäè, äèñåðòàö³¿
Âèêëàäàííÿ


Ãîëîâíà ñòîð³íêà

Ñïèñîê ïóíêò³â ìåíþ:

Âñ³ ïóíêòè ïðèâåäåí³ â ë³âîìó ìåíþ.

Ãîëîâíà ñòîð³íêà Öÿ ñòîð³íêà
Äå ßê ä³ñòàòèñÿ äî íàøî¿ ãðóïè
Ñï³âðîá³òíèêè Ñïèñîê ÷ëåí³â ãðóïè, ñï³âðîá³òíèê³â ³ ãîñòåé
Ïóáë³êàö³¿ Ñïèñîê ïóáë³êàö³é ãðóïè
Ñåì³íàðè Ñïèñîê ñåì³íàð³â, ëåêö³é ³ çàõèñò³â ó ãðóï³.
Àòåëüº Ñïèñîê àòåëüº îðãàí³çîâàíèõ àáî ñï³âîðãàí³çîâàíèõ ÷ëåíàìè ãðóïè
Øêîëè Ñïèñîê øê³ë îðãàí³çîâàíèõ àáî ñï³âîðãàí³çîâàíèõ ÷ëåíàìè ãðóïè
̳æíàð. ñï³âïðàöÿ Ïðîãðàìè îáì³íó, â ÿêèõ áåðóòü ó÷àñòü ÷ëåíè ãðóïè
Ðîáî÷³ ãðóïè Ñïèñîê ðîáî÷èõ ãðóï, ó ÿêèõ áåðóòü ó÷àñòü ÷ëåíè ãðóïè
Ïîñàäè, äèñåðòàö³¿ Ïðîïîçèö³¿ êóðñîâèõ òà äîêòîðàíòñüêèõ ðîá³ò, â³ëüí³ øòàòí³ îäèíèö³
Âèêëàäàííÿ Ëåêö³¿ ³ êîíñïåêòè

Ðîçêëàä

September 2017
SunMonTueWedThuFriSat
 12
3456789
10111213141516
17181920212223
24252627282930
31 
Íàñòóïí³ ñåì³íàðè: Wednesday 27 September 2017
10:25 : Ising model with a power-law spin length distribution (Mariana Krasnytska)
Ïåðåâåñòè â ôîðìàò iCal


Ñïèñîê ìàéáóòí³õ ñåì³íàð³â äîñòóïíèé òàêîæ ÷åðåç RSS ³ FeedBurner. (RSS,FeedBurner)

×åðãîâ³ ãîñò³ ãðóïè


  • September : Fernando Moraes òðèâàë³ñòþ 1 ì³ñÿöü/ì³ñÿö³â
  • September : Maksym Dudka òðèâàë³ñòþ 2 ì³ñÿöü/ì³ñÿö³â
  • September : Stoimen Stoimenov òðèâàë³ñòþ 2 òèæäåíü/òèæí³â
  • September : Francisco Sastre òðèâàë³ñòþ 2 òèæäåíü/òèæí³â
  • October : Ernesto Medina òðèâàë³ñòþ 1 òèæäåíü/òèæí³â
  • November : Xavier Durang òðèâàë³ñòþ 1 ì³ñÿöü/ì³ñÿö³â

Notice: Undefined index: LastPubli in /var/www/html/gps/Groupe_Physique_Statistique/index.php on line 135

One-dimensional Bose gas driven by a slow time-dependent harmonic trap
Scopa S., Karevski D.
J.Phys. A: Math. Theor. 50 (2017) 425301
ArXiv : arxiv:1706.00723 [PDF]

We consider the unitary time evolution of a one-dimensional cloud of hard-core bosons loaded on a harmonic trap potential which is slowly released in time with a general ramp $g(t)$. After the identification of a typical length scale $\ell(t)$, related to the time ramp, we focus our attention on the dynamics of the density profile within a first order time-dependent perturbation scheme. In the special case of a linear ramp, we compare the first order predictions to the exact solution obtained through Ermakov-Lewis dynamical invariants. We also obtain an exact analytical solution for a cloud released from a harmonic trap with an amplitude that varies as the inverse of time. In such situation, the typical size of the cloud grows with a power law governed by an exponent that depends continuously on the initial trap frequency. At high enough initial trap amplitude, the exponent acquires an imaginary part that leads to the emergence of a log-periodic modulation of the cloud expansion.


Äîãîðè