Ãðóïà ñòàòèñòè÷íî¿ ô³çèêè

Êîìàíäà 106, ²íñòèòóò Æàíà Ëÿìóðà

                     
Ãîëîâíà ñòîð³íêà
Äå
Ñï³âðîá³òíèêè
Ïóáë³êàö³¿
Ñåì³íàðè
Àòåëüº
Rencontres
Øêîëè
̳æíàð. ñï³âïðàöÿ
Ðîáî÷³ ãðóïè
Ïîñàäè, äèñåðòàö³¿
Âèêëàäàííÿ


Ãîëîâíà ñòîð³íêà

Ñïèñîê ïóíêò³â ìåíþ:

Âñ³ ïóíêòè ïðèâåäåí³ â ë³âîìó ìåíþ.

Ãîëîâíà ñòîð³íêà Öÿ ñòîð³íêà
Äå ßê ä³ñòàòèñÿ äî íàøî¿ ãðóïè
Ñï³âðîá³òíèêè Ñïèñîê ÷ëåí³â ãðóïè, ñï³âðîá³òíèê³â ³ ãîñòåé
Ïóáë³êàö³¿ Ñïèñîê ïóáë³êàö³é ãðóïè
Ñåì³íàðè Ñïèñîê ñåì³íàð³â, ëåêö³é ³ çàõèñò³â ó ãðóï³.
Àòåëüº Ñïèñîê àòåëüº îðãàí³çîâàíèõ àáî ñï³âîðãàí³çîâàíèõ ÷ëåíàìè ãðóïè
Øêîëè Ñïèñîê øê³ë îðãàí³çîâàíèõ àáî ñï³âîðãàí³çîâàíèõ ÷ëåíàìè ãðóïè
̳æíàð. ñï³âïðàöÿ Ïðîãðàìè îáì³íó, â ÿêèõ áåðóòü ó÷àñòü ÷ëåíè ãðóïè
Ðîáî÷³ ãðóïè Ñïèñîê ðîáî÷èõ ãðóï, ó ÿêèõ áåðóòü ó÷àñòü ÷ëåíè ãðóïè
Ïîñàäè, äèñåðòàö³¿ Ïðîïîçèö³¿ êóðñîâèõ òà äîêòîðàíòñüêèõ ðîá³ò, â³ëüí³ øòàòí³ îäèíèö³
Âèêëàäàííÿ Ëåêö³¿ ³ êîíñïåêòè

Ðîçêëàä

Notice: Undefined index: LastPubli in /var/www/html/gps/Groupe_Physique_Statistique/index.php on line 135

Geometrical optics limit of phonon transport in a channel of disclinations
Fumeron S., Berche B., Moraes F., Santos F., Rodrigues E.
Eur. Phys. J. B 90 (2017) 95
ArXiv : arxiv:1704.02024 [PDF]

The presence of topological defects in a material can modify its electrical, acoustic or thermal properties. However, when a group of defects is present, the calculations can become quite cumbersome due to the differential equations that can emerge from the modeling. In this work, we express phonons as geodesics of a 2 + 1 spacetime in the presence of a channel of dislocation dipoles in a crystalline environment described analytically in the continuum limit with differential geometry methods. We show that such a simple model of 1D array of topological defects is able to guide phonon waves. The presence of defects indeed distorts the effective metric of the material, leading to an anisotropic landscape of refraction index which curves the path followed by phonons, with focusing/defocusing properties depending on the angle of the incident wave. As a consequence, using Boltzmann transfer equation, we show that the defects may induce an enhancement or a depletion of the elastic energy transport. We comment on the possibility of designing artificial materials through the presence of topological defects.


Äîãîðè