Statistical Physics Group

Team 106, Jean Lamour Institute

Working groups


List of items of the menu:

All items are available in the left menu.

Home This page
Where How to reach our group
Staff List of group members, collaborators, and guests
Publications Publication list of the group
Seminars List of seminars, lectures, and defences in the group
Workshops List of workshops organized or co-organized by members of the group
Schools List of schools organized or co-organized by members of the group
International Exchange programs of members of the group
Working groups List of working groups where members of the group participate
Positions Offers of trainees, Ph.D grants and positions
Teaching Teaching material


Last paper

Geometrical optics limit of phonon transport in a channel of disclinations
Fumeron S., Berche B., Moraes F., Santos F., Rodrigues E.
Eur. Phys. J. B 90 (2017) 95
ArXiv : arxiv:1704.02024 [PDF]

The presence of topological defects in a material can modify its electrical, acoustic or thermal properties. However, when a group of defects is present, the calculations can become quite cumbersome due to the differential equations that can emerge from the modeling. In this work, we express phonons as geodesics of a 2 + 1 spacetime in the presence of a channel of dislocation dipoles in a crystalline environment described analytically in the continuum limit with differential geometry methods. We show that such a simple model of 1D array of topological defects is able to guide phonon waves. The presence of defects indeed distorts the effective metric of the material, leading to an anisotropic landscape of refraction index which curves the path followed by phonons, with focusing/defocusing properties depending on the angle of the incident wave. As a consequence, using Boltzmann transfer equation, we show that the defects may induce an enhancement or a depletion of the elastic energy transport. We comment on the possibility of designing artificial materials through the presence of topological defects.